Tests of independence among continuous random vectors based on Cramér-von Mises functionals of the empirical copula process

نویسندگان

  • Ivan Kojadinovic
  • Mark Holmes
چکیده

A decomposition of the independence empirical copula process into a finite number of asymptotically independent sub-processes was studied by Deheuvels. Starting from this decomposition, Genest and Rémillard recently investigated tests of independence among random variables based on Cramér-von Mises statistics derived from the sub-processes. A generalization of Deheuvels’ decomposition to the case where independence is to be tested among continuous random vectors is presented. The asymptotic behavior of the resulting collection of Cramér-von Mises statistics is derived. It is shown that they are not distribution-free. One way of carrying out the resulting tests of independence then involves using the bootstrap or the permutation methodology. The former is shown to behave consistently, while the latter is employed in practice. Finally, simulations are used to study the finite-sample behavior of the tests.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing Independence Based on Bernstein Empirical Copula and Copula Density

In this paper we provide three nonparametric tests of independence between continuous random variables based on Bernstein copula and copula density. The first test is constructed based on functional of Cramér-von Mises of the Bernstein empirical copula. The two other tests are based on Bernstein density copula and use Cramér-von Mises and Kullback-Leiber divergencetype respectively. Furthermore...

متن کامل

Parameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance

The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...

متن کامل

Asymptotic local efficiency of Cramér--von Mises tests for multivariate independence

Deheuvels [J. Multivariate Anal. 11 (1981) 102–113] and Genest and Rémillard [Test 13 (2004) 335–369] have shown that powerful rank tests of multivariate independence can be based on combinations of asymptotically independent Cramér–von Mises statistics derived from a Möbius decomposition of the empirical copula process. A result on the large-sample behavior of this process under contiguous seq...

متن کامل

Approximating the critical values of Cramér-von Mises tests in general parametric conditional specifications

A numerical approximation of the critical values of Cramér-von Mises (CvM) tests is proposed for testing the correct specification of general conditional location parametric functionals. These specifications include conditional mean and quantile models. The method is based on the estimation of the eigenelements of the covariance operator associated with the CvM test, and it has the advantage th...

متن کامل

Cramér-Von Mises Statistics for Discrete Distributions

The Cramér-von Mises family of goodness-of-fit statistics is a well-known group of statistics used to test fit to a continuous distribution. In this article we extend the family to provide tests for discrete distributions. The statistics examined are the analogues of those associated with the names of Cramér-von Mises, Watson and Anderson-Darling, called W , U and A respectively, and their comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 100  شماره 

صفحات  -

تاریخ انتشار 2009